Big Data: как применять и анализировать большие данные?
Одно из самых популярных направлений в IT - применение больших данных. Big Data - это масштабные, чаще всего неупорядоченные массивы информации, и технологии работы с ними. Такая информация может храниться в базах данных, в сетях социальных медиа, в системах GPS, датчиках и т.д.
В использовании Big Data есть преимущества для бизнеса, поскольку это открывает новые возможности и помогает компаниям развиваться. Онлайн-магазины, например, используют анализ больших данных для создания персонифицированных сервисов и продуктов, ориентированных на поведение клиентов.
Технологии анализа больших данных, такие как системы машинного обучения, помогают исследователям и аналитикам находить скрытые закономерности в массивах информации. К примеру, в области медицины это может привести к развитию новых лекарств и методов лечения.
Использование больших данных - это не просто модный тренд, это реальный инструмент, который помогает организациям и индивидуальным предпринимателям анализировать рынки, предлагать персонализированный контент и разрабатывать более эффективные продукты и сервисы для потенциальных клиентов.
Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.
Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.
Методы анализа и хранение данных
В мире современных технологий большие данные превратились в неизбежный элемент, который требует специального подхода. Огромные массивы разнородной информации не могут быть просто сохранены, оставив их лежать мертвым грузом и не используя. Работа с Big Data строится на нескольких этапах. В первую очередь данные должны быть собраны из разных источников. Затем следует процесс обеспечения их хранения, обработки и защиты от потери данных. В настоящее время облачные решения приобретают все большую важность в связи с возникающими особыми требованиями в хранении и обработке данных.
Большие данные непрерывно накапливаются, и наращивание собственной IT-инфраструктуры при всех возможных масштабируемых возможностях не является оптимальным решением. Нагрузки также не всегда предсказуемы, и физические серверы на пиковые моменты могут выйти из строя. Перестраховка же неоправданно увеличивает затраты. Перенос инфраструктуры в облако позволяет отказаться от дорогостоящего оборудования для хранения данных, а также от затрат на его поддержание и обеспечение безопасности. Облачные хранилища позволяют быстро масштабировать и резервировать вычислительные ресурсы и способны вместить большие объемы информации, при этом обеспечивая надежность, отказоустойчивость и гибкую настройку.
Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.
Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.
Обработка данных перед анализом
Один из важнейших этапов работы с большими объемами данных, это их предварительная обработка. Она включает в себя методы приведения разнородных данных к единому виду, дополнения отсутствующих данных и очистку от ненужной информации. Подготовительная обработка данных выполняется перед началом анализа и играет важную роль в получении качественных результатов.
Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.
Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.
Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.
Статистический анализ
Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какими характеристиками обладает Big Data?
Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:
1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.
2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.
3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.
С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).
Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.
Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.
Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.
Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.
Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.
Внедрение новых технологий
Технологические компании используют возможности анализа Big Data для создания интеллектуальных продуктов и сервисов, которые способны решать принципиально новые задачи. Одним из примеров таких продуктов является платформа «вычислительной биологии», разработанная в США. Эта платформа предлагает возможность видеть взаимодействие химических веществ с сигнальными рецепторами клеток организма. Благодаря инструментам Big Data, настоящая революция в фармакологии уже не за горами: платформа позволит находить и создавать лекарственные препараты, которые точно попадают в цель.
Анализ больших данных уже используется в медицинских исследованиях для ускорения и повышения точности результатов. На конференции DUMP, которая проходила в Уральском регионе, были представлены данные об использовании Big Data в медицинских исследованиях. Использование новой технологии в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
В Европе использование анализа больших данных в медицине более распространено. Исследования в этой области показали, что некоторые генетические факторы могут быть связаны с заболеваемостью раком. Была проанализирована информация на 150 000 пациентов, и выявлены факторы риска возникновения заболевания.
Внедрение новых технологий в медицину позволяет значительно повысить эффективность медицинских исследований и медицинской практики в целом.
Активное использование больших данных в маркетинге позволяет анализировать поведение клиентов, используя историю их покупок, поисковых запросов, посещений и лайков в социальных сетях. Такой подход позволяет маркетологам определить предпочтения пользователей и на основе этого предлагать им товары и услуги, которые имеют для них наибольшую ценность. С помощью Big Data можно создавать более адресную и эффективную рекламу.
Amazon был первым сервисом, который запустил систему рекомендаций, основанную на анализе пользовательских запросов. В процессе работы системы учитывались не только история покупок и поведение клиентов, но и разнообразные внешние факторы, такие как сезон или предстоящие праздники. Как результат, система рекомендаций стала отвечать за более чем треть всех продаж на платформе Amazon.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
Улучшение производственных процессов с использованием Big Data
Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.
Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.
Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.
Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.
Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.
Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.
Фото: freepik.com